Sixth Report of the Committee on Atomic Weights of the International Union of Chemistry.

By G. P. BAXTER (Chairman), O. HÖNIGSCHMID, and P. LEBEAU.

THE following report of the Committee covers the twelve-month period, September 30, 1934, to September 30, 1935.*

Three changes have been made in the table of atomic weights. Those of tantalum and radium have been changed from 181.4 and 225.97 to 180.88 and 226.05, respectively. Protoactinium, with atomic weight 231, has been added to the table.

CARBON.—For some time it has seemed probable that the International value for the atomic weight of carbon, 12.00, is too low (Reports of this Committee for 1933 and 1934). Many recent determinations of densities and compressibilities of gaseous hydrocarbons and oxides of carbon have yielded values higher than this. Furthermore, the isotopic weight of ¹²C from mass spectrographic results appears to be slightly higher than 12.00 on the chemical scale (Aston, *Proc. Roy. Soc.*, 1935, *A*, **149**, 400; *Nature*, 1935, **135**, 541) and allowance for 1/106 (Jenkins and Ornstein, *Proc. Acad. Sci. Amsterdam*, **35**, 1212) or 1/410 (Aston, *loc. cit.*) of ¹³C raises the average value for the mixture of isotopes by about 0.01 unit.

Pending the completion of chemical determinations of the atomic weight of carbon now under way, no change has been made in the value in the International Table, although the value 12.01 appears nearer the true value than 12.00.

POTASSIUM.—Johnson (J. Physical Chem., 1935, 39, 781) has determined the ratio KCl: Ag. Five samples of potassium chloride were prepared from the sources and by the operations indicated below :

1. Norwegian potassium oxalate. Six crystallisations as oxalate, one as chloride and fusion.

2. German potassium nitrate. Ten crystallisations as nitrate, three precipitations as chloride with hydrogen chloride with intermediate fusion and crystallisation from water.

3. German potassium chlorate. Ten crystallisations as chlorate, and decomposition to chloride.

4. German potassium chloride. One crystallisation from water, two precipitations with hydrogen chloride with intermediate fusion and crystallisation from water, one crystallisation from constant-boiling hydrochloric acid, one from water and fusion.

5. Searles Lake, California, U.S.A., potassium chloride. One crystallisation from dilute ammonia, two crystallisations from water, one from normal hydrochloric acid (made from the same sample), eight crystallisations from water and fusion.

The Atomic Weight of Potassium.

		0,0		
Sample of KCl.	Wt. of KCl.	Wt. of Ag.	Ratio KCl : Ag.	At. wt. K.
- 1	7.174405	10.38101	0.691109	39.100
2	7.159125	10.35886	0.691111	$39 \cdot 100$
3	7.139503	10.33051	0.691108	39.100
4	7.110874	10.28910	0.691107	$39 \cdot 100$
5	$7 \cdot 119655$	10.30174	0.691112	39.100
1	7.113533	10.29294	0.691108	39.100
2	7.124221	10.30839	0.691109	$39 \cdot 100$
3	$7 \cdot 241729$	10.47841	0.691110	39.100
4	7.128585	10.31474	0.691107	$39 \cdot 100$
5	7.163709	10.36550	0.691111	39.100
1	7.132066	10.31981	0.691104	39.099
2	$7 \cdot 151197$	10.34747	0.691106	$39 \cdot 100$
3	$7 \cdot 230660$	10.46250	0.691103	39.099
4	$7 \cdot 212326$	10.43594	0.691105	39.099
5	$7 \cdot 102363$	10.27681	0.691106	$39 \cdot 100$
		Ave	rage 0.691108	39.100

* Authors of papers bearing on the subject are requested to send copies to each of the three members of the Committee at the earliest possible moment : Prof. G. P. Baxter, Coolidge Laboratory, Harvard University, Cambridge, Mass., U.S.A.; Prof. O. Hönigschmid, Sofienstrasse 9/2, Munich, Germany; Prof. P. Lebeau, Faculté de Pharmacie, 4, Avenue de l'Observatoire, Paris (6^e), France.

All five samples were further crystallised three times from water, filtered through platinum sponge, and again crystallised.

The salt was prepared for weighing by fusion in nitrogen (in a Pt-Rh boat), and after being dissolved to make a 0.2n-solution was added dropwise to a 0.2n-solution of an equivalent amount of pure silver. In Analyses 3, 12, 13, 14, and 15 both solutions were added dropwise to 200 ml. of water. After standing 13 to 50 days at room temperature the end-point of the titration was found, after cooling to 0° , by the "standard solution" method (Johnson) and potentiometrically.

The atomic weight of potassium thus found is slightly higher than recent values found by others from the same ratio, and that employed in the International Table.

CHROMIUM.—Nunez (Anal. Fis. Quim., 1935, 33, 533) has redetermined the atomic weight of chromium through the ratios of chromyl chloride to silver and silver chloride. Dry potassium dichromate which had been six times recrystallised from slightly acid solution was mixed with dry sodium chloride which had been six times precipitated with hydrogen chloride. Upon the mixture, contained in an exhausted glass system, was dropped concentrated sulphuric acid, and the resulting chromyl chloride was collected over metallic silver. The product was then subjected to several fractional distillations in exhausted glass systems, in the first two of which the chromyl chloride stood over silver for 24-hour periods. The final product was collected in sealed glass bulbs.

A preliminary preparation (Series I) was made in a glass system containing greased joints. In preparing material for Series II and III only fused connections were employed. Series II and III represent more and less volatile portions of the same sample.

During the handling of the chromyl chloride care was taken so far as possible to avoid exposure to light, in order to avoid decomposition, since the substance is photochemically sensitive, especially to light of short wave-length.

After being weighed, the bulbs containing the chromyl chloride were broken under water and the chloride was precipitated with solutions of nearly equivalent quantities of pure silver. The end-point was determined nephelometrically, and finally the silver chloride was washed, collected, dried, and weighed. Dissolved silver chloride was estimated nephelometrically.

Weights are corrected to vacuum.

The Atomic Weight of Chromium.

Series.	Sa	.mple.	Wt. of CrO ₂ Cl ₂ .	Wt. of Ag. (Ratio $CrO_2Cl_2: 2\Lambda g.$	At. wt. Cr.	Wt. of AgCl.	Ratio CrO ₂ Cl ₂ : 2AgCl.	At. w t. Cr.
I	{	1	2·23946	3.11873	0.718068	52.016	4.14375	0.540443	52.017
	ι	2	3.40565	4.74299	0.718039	52.010	6.30183	0.540422	52.011
				Average	e 0·718054	52.013		0.540432	52.014
	ſ	1	3.95716	5.51087	0.718064	52.015	7.32206	0.540443	52.017
		2	$5 \cdot 20776$	7.25239	0.718075	52.018	9.63597	0.540450	52.019
11	{	3	$3 \cdot 81350$	5.31090	0.718052	52.013	7.05634	0.540436	52.015
		4	4.00910	5.58329	0.718053	52.013	7.41855	0.540416	52.009
		5	2.99479	4.17077	0.718042	52.011	5.54165	0.540415	52.009
				Average	e 0·718057	52.014		0.540432	52.014
	ſ	6	3.78022	$5 \cdot 26473$	0.718027	52.008	6.99504	0.540414	52.009
III	Ł	7	2.94949	$4 \cdot 10753$	0.718069	52.017	$5 \cdot 45773$	0.540424	52.012
	l	8	1.41900	1.97620	0.718045	52.011	2.62570	0.540427	52.012
				Average	e 0·718047	52.012		0.540422	52.011
				Average of al	1 0.718053	$52 \cdot 013$		0.540429	52.013

The result, 52.013, confirms the current value in the International Table.

ARSENIC.—Baxter and Frizzell (J. Amer. Chem. Soc., 1935, 57, 851) have determined the ratio of arsenic trichloride to iodine, by hydrolysing weighed quantities of arsenic trichloride with disodium phosphate and allowing the arsenious acid to react with weighed very nearly equivalent quantities of iodine in nearly neutral solution. A slight deficiency of one or the other was then made up with dilute solutions of arsenious acid or iodine.

Arsenic trichloride was purified by extensive fractionation in exhausted systems and collected in weighed glass capsules. Iodine was purified by three distillations from potassium iodide made from iodine of the same degree of purity as that to be distilled

(Samples I and II). Sample III resulted from thermal decomposition of very pure iodine pentoxide in an earlier investigation of Baxter and Butler on the atomic weights of iodine. All three samples were sublimed over hot platinum in a current of air. In Series 1 the iodine was weighed in stoppered weighing tubes. In Series 2 and 3 it was weighed in exhausted sealed glass bulbs. The hydrolysis of the arsenic trichloride and the reaction of the arsenious acid with iodine were carried out without contact with oxygen by working in exhausted vessels up to the final determination of the end-point. Fractions of arsenic trichloride are numbered in the order of decreasing volatility. Weights are corrected to vacuum.

The value 126.917 is used for the atomic weight of iodine. In this paper the erroneous value 126.916 is employed.

Fraction	Sample	Wt. of		Ratio	
of AsCl ₃ .	of I_2 .	AsCl ₃ .	Wt. of I_2 .	AsCl ₃ : I ₂ .	At. wt. As.
		Se	eries 1.		
3	I	10.33337	14.46807	0.714219	$74 \cdot 922$
10	III	12.03069	$16 \cdot 84522$	0.714190	74.915
32	III	11.90242	16.66431	0.714246	74.929
31	III	11.76237	$16 \cdot 46851$	0.714234	74.926
11	III	11.50761	$16 \cdot 11185$	0.714233	$74 \cdot 926$
12	III	10.86983	15.21915	0.714221	74.923
13	III	10.43957	14.61741	0.714187	74.914
14	III	10.52815	14.74051	0.714232	$74 \cdot 925$
16	II	$9 \cdot 23191$	12.92578	0.714225	74.924
15	II	9.75285	13.65529	0.714218	74.922
			Avera	age 0.714221	74.923
		Se	eries 2.		
4	T	11.07602	15.50784	0.714221	74.923
5	IĪ	11.02523	$15 \cdot 43720$	0.714199	74.917
Ğ	ÎÎ	10.81172	15.13922	0.714153	74.905
9	III	11.03085	15.44504	0.714200	74.917
7	III	11.41153	15.97940	0.714140	74.902
-			Avera	lge 0.714183	74.913
		Se	ries 3.		
33	III	14.50315	20.30806	0.714157	74.906
34	III	16.22008	22.71162	0.714175	74.911
30	III	9.63062	13.48470	0.714189	74.914
17	III	10.11654	$14 \cdot 16485$	0.714200	74.917
29	III	10.05286	14.07583	0.714193	74.915
$\overline{28}$	III	10.60621	$14 \cdot 85068$	0.714190	74.915
19	III	11.13389	$15 \cdot 58919$	0.714206	74·919
27	III	10.93869	$15 \cdot 31583$	0.714208	74.919
20	III	9.78401	13.69959	0.714183	$74 \cdot 913$
26	III	$9 \cdot 85690$	13.80122	0.714205	74.919
25	III	$9 \cdot 62562$	13.47741	0.714204	74.918
21	II	10.24867	14.34997	0.714195	74.916
22	III	9.97953	13.97324	0.714189	74.914
			Avera	ge 0.714192	74.915
			Average of	all 0.714200	74.917
			•		

The Atomic Weight of Arsenic.

The result supports the present International value.

TELLURIUM.—Hönigschmid and Baudrexler (Z. anorg. Chem., 1935, 223, 91) have compared tellurium tetrachloride with silver. Tellurium was dissolved in nitric acid and the basic nitrate was four times recrystallised from nitric acid. Ignition to dioxide followed. After solution in hydrochloric acid the metal was precipitated with hydrazine, and after being dried was distilled in a current of hydrogen (I). A second sample which was used in an earlier investigation on the tetrabromide was similarly purified, except that the final distillation was in vacuum (II). In a spectrographic examination Gerlach found both samples to be free from impurities.

To prepare the tetrachloride, tellurium metal was heated in oxygen-free chlorine in a quartz apparatus until the mixture of di- and tetra-chloride formed at first had been completely converted into tetrachloride. It was then twice sublimed in a current of chlorine and hydrogen chloride and collected in a weighed quartz tube. After fusion in chlorine the product was allowed to solidify and cool in nitrogen, and was transferred to a weighing-bottle in dry air. This material was used in the first series of analyses.

Other samples of the tetrachloride, prepared in an identical fashion, were sublimed in exhausted glass apparatus and sealed in glass bulbs for weighing. Here slight dissociation of the tetrachloride into the darker dichloride was sometimes observed. The analyses in the second series were made only with fractions which showed no trace of darkening.

For analysis the tellurium tetrachloride was dissolved in tartaric acid and then compared with weighed equivalent amounts of pure silver in the usual way, and the silver chloride was collected and weighed. Weights are corrected to vacuum.

Sample of Te.	Wt. of TeCl	Wt. of Ag.	Ratio TeCL : 4Ag.	At. wt. Te.	Wt. of AgCl.	Ratio TeCl. : 4AgCl.	At. wt. Te.
	5	TeCl₄ su	blimed in chlor	ine and hyd	lrogen chlorid	le.	
II	3.10877	4.97861	0.624425	127.62	0		
11	3.10067	4.96557	0.624434	127.63			
11	2.76664	$4 \cdot 43026$	0.624487	127.65	5.88640	0.470006	127.65
II	$3 \cdot 22268$	5.16097	0.624433	127.63	$6 \cdot 85689$	0.469929	127.64
II	$2 \cdot 83816$	4.54547	0.624393	127.61	6.03937	0.469943	127.61
II	$2 \cdot 48858$	3.98535	0.624432	127.63	$5 \cdot 29502$	0.469985	127.64
II	2.90220	4.64760	0.624451	127.64	6.17487	0.470002	127.65
II	$2 \cdot 46428$	3.94633	0.624449	127.63	$5 \cdot 24358$	0.469961	127.62
II	$2 \cdot 28970$	3.66727	0.624361	127.60	$4 \cdot 87216$	0.469956	127.62
II	2.87152	4.59861	0.624432	127.63	6.11069	0.469918	127.60
п	$2 \cdot 41697$	$3 \cdot 87036$	0.624482	127.65	$5 \cdot 14279$	0.469973	127.63
II	2.07278	$3 \cdot 31955$	0.624416	127.62	4.41041	0.469975	127.63
		Avera	age 0.624433	127.63		0.469965	127.63
			TeCl₄ sublin	ned in vacu	um.		
I	$3 \cdot 28709$	$5 \cdot 26438$	0.624402	127.61	6.99440	0.469960	127.62
Ī	2.55532	4.09223	0.624432	127.63	0 00 110	0 200000	
Ī	4.47487	7.16715	0.624358	127.60	9.52250	0.469926	127.60
I	6.26285	10.02985	0.624421	127.62	13.32623	0.469964	127.64
I	3.10159	4.96705	0.624433	127.63	6.59955	0.469970	127.63
II	2.31719	3.71078	0.624448	127.63			,
		Avera	age 0.624416	127.62		0.469955	127.62

The Atomic Weight of Tellurium.

The average value 127.63 is only slightly higher than that recently found by Hönigschmid, Sachtleben, and Wintersberger from analyses of tellurium tetrabromide and the synthesis of silver telluride, 127.61.

TERBIUM.—Marsh (J., 1934, 1972; 1935, 772) purified terbium material, containing chiefly gadolinium, dysprosium, and terbium, by fractionation of the dimethylphosphates until the arc lines of gadolinium in the tail fractions and the absorption bands of dysprosium in the head fractions could not be detected. Terbium oxalate was precipitated with oxalic acid, washed, and air dried at 30°. Weighed portions of oxalate were ignited in silica crucibles first in air at 1000°, then in hydrogen at 700—800°, and, after rapid cooling by quenching with water, were weighed. Other weighed portions of oxalate were dissolved in dilute sulphuric acid containing manganous sulphate, and then were titrated with standard permanganate. Weights are corrected to vacuum.

The Atomic Weight of Terbium.

Wt. of	Wt. of		Wt. of	Wt. of	
$Tb_2(C_2O_4)_3$.	Tb ₂ O ₃ .	% of Tb ₂ O ₃ .	$Tb_2(C_2O_4)_3$.	C ₂ O ₃ .	$\%$ of C_2O_3 .
0.8046	0.38337	47.655	0.34336	0.09662	28.139
1.16364	0.55446	47.649	0.32038	0.09010	$28 \cdot 119$
1.33993	0.63838	47.643	0.32307	0.09091	$28 \cdot 139$
1.27706	0.60848	47.647	0.56839	0.15977	28.110
1.14461	0.54333	47.644	0.57361	0.16147	28.149
	Ave	erage 47.648	0.58153	0.16365	28.141
		0	0.62028	0.17465	$28 \cdot 157$

Average 28.136

The average atomic weight of terbium calculated from the two percentages is 158-89, which is lower than that found by Urbain from the ratio of octahydrated sulphate to sulphate, 159.2, but agrees with Aston's finding that terbium is a simple element of atomic weight 158-91.

EUROPIUM.—Meyers and Hopkins (J. Amer. Chem. Soc., 1935, 57, 241) have compared europium chloride with silver. Starting with material consisting chiefly of samarium, europium, and gadolinium, fractional crystallisation as double magnesium nitrates was first carried out with the addition of bismuth to split samarium and europium. Fractional crystallisation of the europium and gadolinium fractions as simple nitrates followed, with bismuth as separating element. After removing most of the samarium in this way, further fractionation as double magnesium nitrates, as simple nitrates, and again as double magnesium nitrates was carried out. Of the final twelve fractions, Nos. 8, 9, and 10 gave no spectroscopic evidence of impurity.

After removal of bismuth, each of these fractions was purified by alternate precipitation of oxalate and hydroxide, and the final oxalate was ignited to oxide.

Chloride was prepared by dissolving the oxide in a weighed quartz flask and, after evaporation, dehydrating the chloride slowly in a current of dry hydrogen chloride, at gradually increasing temperatures until fusion took place. The weighed fused salt was compared with pure silver in the conventional way. Weights are corrected to vacuum.

The Atomic Weight of Europium.

Fraction.	Wt. of EuCl _a .	Wt. of Ag.	Ratio EuCl ₃ : 3Ag.	At. wt. Eu.
8	1.15506	1.44544	0.79911	$152 \cdot 25$
9	0.43279	0.54140	0.79939	152.33
10	0.60180	0.75291	0.79930	152.31
9	1.10986	1.38862	0.79924	$152 \cdot 29$
8	1.00560	1.25820	0.79924	152.29
10	0.52157	0.65262	0.79919	152.27
8	0.90408	1.13104	0.79933	152.32
9	0.33150	0.41472	0.79930	152.31
10	0.57944	0.72498	0.79925	$152 \cdot 29$
8	0.91942	1.15035	0.79925	$152 \cdot 29$
		Av	verage 0.79926	$152 \cdot 30$

The final result is considerably higher than both the present International value and that recently found by Aston, 151.90.

TANTALUM.—Hönigschmid and Schlee (Z. anorg. Chem., 1934, 221, 129) have compared tantalum pentabromide with silver. Potassium tantalum fluoride was six times recrystallised from hydrofluoric acid, and then was converted into tantalic acid with hot concentrated sulphuric acid. Potassium sulphate was removed by washing and the dried acid was ignited at 1000°. X-Ray analysis by Prandtl and von Hevesy failed to reveal niobium and zirconium, but 0.1% of thorium remained. The latter was reduced to 0.01% by fusing with soda and extracting the residue, with rejection of the insoluble portion (I).

Material recovered from the earlier analyses constituted a second sample (II).

The pentabromide was prepared in two ways. The first consisted in heating a mixture of the tantalic oxide with carbon in a current of nitrogen and bromine. The resulting pentabromide was then fractionated in an exhausted system and collected in sealed glass bulbs for weighing.

In the second method the oxide was first converted into sulphide by heating it to 1000° in a current of hydrogen sulphide and carbon disulphide, and the sulphide was then changed to bromide in a stream of nitrogen and bromine. Fractional distillation in a current of nitrogen and bromine eventually eliminated all sulphur bromide, and the product was distilled into exhausted glass bulbs, which were sealed by fusion.

The weighed bulbs were broken under cold oxalic acid, and the tantalic acid which separated was dissolved by warming for some hours. After cooling, the clear solution was filtered and the glass collected and weighed. Comparison with silver in the usual way followed. Weights are corrected to vacuum. The Atomic Weight of Tantalum.

Sample of TaBr ₅ .	Wt. of TaBr ₅ .	Wt. of Ag.	Ratio TaBr ₅ : 5Ag.	At. wt. Ta.
I	4.01046	3.72677	1.07612	180.879
I	3.36860	3.13031	1.07612	$180 \cdot 879$
I	$2 \cdot 31963$	$2 \cdot 15539$	1.07620	180.922
I	2.98695	2.77560	1.07615	180.895
I	5.97976	5.55678	1.07612	180.879
I	2.69510	2.50447	1.07611	180.876
I	2.58878	$2 \cdot 40553$	1.07618	180.911
I	$2 \cdot 15134$	1.99927	1.07606	180.847
II	3.91760	3.64051	1.07611	180.876
II	4.92095	4.57277	1.07614	$180 \cdot 890$
II	$3 \cdot 43463$	3.19157	1.07616	$180 \cdot 899$
II	7.95901	7.39614	1.07610	180.870
II	4.48505	4.16776	1.07613	180.884
II	4.54602	4.22440	1.07613	180.887
		Αv	verage 1.07613	$180 \cdot 884$

The average result agrees closely with Aston's finding that tantalum is a simple element of atomic weight 180.89, and seems to warrant a change in the value for this element in the International Table.

RADIOGENIC LEAD.—Baxter and Alter (J. Amer. Chem. Soc., 1935, 57, 467) have determined the atomic weights of several radiogenic leads. Lead chloride from each specimen was purified by precipitation as sulphide, crystallisation of the nitrate and chloride, and sublimation of the chloride in hydrogen chloride. The ratio of lead chloride to silver was found in the conventional way by the equal opalescence method. Weights are corrected to vacuum.

The Atomic Weight of Lead.

		0	,		
0	Fusion	Wt. of	Wt. of	Ratio	At. wt.
Source.	atmosphere.	PbCl ₂ .	Ag.	$PbCl_2: 2Ag.$	Pb.
Uraninite, Besner Mine,	$\int N_2 + HCl$	$2 \cdot 82198$	$2 \cdot 19830$	1.28371	206.059
Parry Sound, Ontario,	$\{N_2 + 10\% \text{ HCl}\}$	1.17902	0.91849	1.28365	206.046
Canada.			Ave	rage 1·28368	206.052
Pitchblende, Great Bear	$\int N_2 + HCl$	$2 \cdot 17006$	1.69051	1.28367	206.051
Lake, N.W.T., Canada.	$N_2 + HCl$	3.44166	$2 \cdot 68097$	1.28374	206.065
	-		Ave	rage 1·28370	206.058
Cyrtolite, Hybla, Ontario,	, ∫HCl	0.77361	0.60233	1.28436	206.20
Canada.	$N_2 + 50\%$ HCl	0.47163	0.36722	1.28433	206.19
			Ave	rage 1·28434	206.20
	$\int N_2 + 10\%$ HCl	2.99554	$2 \cdot 33341$	1.28376	206.070
Curtolite II Bodford	$N_2 + 10\%$ HCl	$3 \cdot 20665$	$2 \cdot 49788$	1.28375	206.067
New York USA	{HCl	1.06532	0.82984	1.28377	206.071
New 101K, 0.5.A.	$N_2 + 50\%$ HCl	$3 \cdot 28903$	$2 \cdot 56206$	1.28374	206.067
	$lN_{2} + 10\%$ HCl	3.31553	2.58255	1.28382	206.083
			Ave	rage 1·28377	206.072
Cyrtolite I, Bedford.	$N_2 + 50\%$ HCl	0.48244	0.37596	$1 \cdot 28322$	$205 \cdot 954$
Galena, Yancey County,	$\int N_2 + 10\%$ HCl	3.45151	2.67758	1.28904	$207 \cdot 209$
North Carolina, U.S.A.	$(N_2 + 10\% HC)$	4.29642	3.33302	1.28904	207.208
			Ave	rage 1·28904	$207 \cdot 209$
	$[N_2 + 50\% HC]$	2.99570	2.33388	1.28357	206.029
	$N_2 + 50\%$ HCl	2.01485	1.56973	1.28357	206.028
Curite, Katanga, Africa.	{ HCl	3.01913	$2 \cdot 35212$	1.28358	206.031
	$N_2 + 10\%$ HCl	2.93470	$2 \cdot 28639$	1.28355	206.025
	$lN_2 + 50\%$ HCl	2.00228	1.55997	1.28354	206.022
			Ave	rage 1.28356	206.027

The value for Great Bear Lake material agrees with that found by Marble; that for Bedford cyrtolite I with that found earlier by Baxter and Alter; that for curite lead with the value found simultaneously by Hönigschmid with a portion of the same material.

RADIUM.—Hönigschmid and Šachtleben (Z. anorg. Chem., 1934, **221**, 65) have redetermined the atomic weight of radium through the ratio RaBr_2 : RaCl_2 . Five grams of radium bromide, lent by the Union Minière du Haut-Katanga, were available. Initially this contained 98.83 atomic % of radium and 1.17 of barium. After ten recrystallisations of the chloride by precipitation with hydrogen chloride in quartz, the atomic % of barium had dropped to 0.3. Fifteen additional similar crystallisations yielded material of atomic weight 226.005. A third series of crystallisations from constant-boiling hydrochloric acid raised the atomic weight to 226.05. Ten more crystallisations from constant-boiling hydrochloric acid followed. The final material was examined spectroscopically by Gerlach, who estimates the residual barium at not more than 0.002-0.003 atomic %, which would lower the atomic weight of radium by 0.002-0.003 unit.

Radium bromide was prepared from the chloride by repeated evaporation with a large excess of hydrobromic acid in quartz. After transference to a weighed quartz boat it was dehydrated in a current of nitrogen and hydrogen bromide at gradually increasing temperatures to 750° , and the dried salt was transferred to a weighing-bottle in air. The weighed salt was then heated in a current of chlorine and hydrogen chloride, at first at 300° , finally at 750° , and when the chlorine and hydrogen chloride had been displaced by nitrogen at 300° , the chloride was transferred to the weighing-bottle in dry air. Constancy in weight was readily secured.

Although neither the radium bromide nor the radium chloride was fused before being weighed, very similar experiments in which pure barium bromide was converted to chloride yielded a normal atomic weight, so that it is evident that errors from moisture retained by the radium bromide, incomplete conversion, adsorbed air and temperature of the radium salts were either negligible or compensatory.

After the first six experiments had been completed, it was discovered that radium salts, when placed on the balance, owing to heat evolution at first slowly lost in weight, coming to constancy after a period of about an hour. The weights given in the last two analyses in the table represent values obtained after constancy had been reached. For the first six analyses the weights given represent the minimum values observed where the weighings were repeated.

All weights are corrected to vacuum.

Crystal Series.	Wt. of RaBr ₂ .	Wt. of RaCl ₂ . Rati	o RaBr ₂ : RaCl ₂ .	At. wt. Ra.
III	2.18675	1.68286	1.299424	226.049
III	$3 \cdot 49878$	2.69256	1.299425	226.048
IV	$3 \cdot 46519$	2.66677	1.299396	226.077
IV	$3 \cdot 41017$	$2 \cdot 62432$	$1 \cdot 299449$	226.025
IV	$3 \cdot 43249$	$2 \cdot 64150$	1.299447	226.026
IV	$3 \cdot 40754$	$2 \cdot 62239$	1.299402	226.070
		Average	e 1·299424	226.049
IV	$3 \cdot 42566$	2·63631	1.299415	226.059
IV	$2 \cdot 35813$	1.81475	1.299424	226.049
		Average	∋ 1·299420	226.054
		Average of al	1 1.299423	226.050

The Atomic Weight of Radium.

The Atomic Weight of Barium.

Wt. of BaBr ₂ .	Wt. of BaCl ₂ .	Ratio BaBr ₂ : BaCl ₂ .	At. wt. Ba.
4.89362	3.42946	1.426936	137.356
4.71132	$3 \cdot 30176$	1.426912	$137 \cdot 368$
3.76377	$2 \cdot 63768$	1.426924	137.362
5.04872	3.53818	1.426926	137.361
	A	verage 1.426925	137.361

The atomic weight of radium thus found is 0.08 higher than the value found by Hönigschmid some years ago with much smaller quantities of material. The new value, 226.05, has been adopted for the International Table.

PROTOACTINIUM.—von Grosse (*Proc. Roy. Soc.*, 1935, *A*, 150, 363), working with material isolated by von Grosse and Agruss, has determined the ratio $2K_2PaF_7$: Pa_2O_5 . After two precipitations with hydrogen peroxide from dilute sulphuric acid solution, the preparation showed no evidence of impurity when examined in an X-ray spectrograph. The double fluoride was prepared by dissolving protoactinium oxide in hydrofluoric acid

and adding the necessary quantity of potassium fluoride. The resulting crystals were twice recrystallised from hydrofluoric acid.

After being dried at 20° in vacuum over phosphorus pentoxide, the double fluoride was converted into sulphates by evaporation with an excess of sulphuric acid, and then the protoactinium was precipitated as hydroxide with ammonia, collected, ignited eventually to 800°, and weighed. Weights are corrected to vacuum.

The	Atomic Wei	ight of Protoactinium.	
Wt. of K ₂ PaF ₇ .	Wt. of Pa ₂ O ₅ .	Ratio $2K_2PaF_7$: Pa_2O_5 .	At. wt. Pa.
0.091907	0.056274	1.6332	230.4
0.070047	0.042913	1.6323	230.8
		Average 1.6328	230.6

The result seems to be in accord with the expectation that protoactinium has the atomic weight 231.

Aston (*Proc. Roy. Soc.*, 1935, A, 149, 396), by determination of packing fractions and abundance ratios with the mass spectrograph, has obtained the following atomic weights.

Carbon	12.0080	Gallium	69.71
Calcium	40.076	Zirconium	91.24
Titanium	47.91	Silver	107.87
Iron	55.84	Cadmium	112.2
Nickel	58.68	Indium	114.80
Hafni	um	178.4	

The only serious discrepancy between these values and the International values is with cadmium.

Thorium and rhodium were found to be probably simple.

By comparison of doublets, Aston (*Nature*, 1935, 135, 541) has obtained new values for several light atoms, although these are still regarded as provisional.

	$^{16}O = 16.0000.$	O = 16.0000.
н	1.0081	1.0079
D	2.0148	2.0143
Не	4.0041	4.0031
¹² C	12.0048	12.0018

If the abundance ratio of D is 1/5000 and that of ¹³C is 1/100, the atomic weights of hydrogen and carbon become 1.0081 and 12.012.